

HVAC – Basis of Design: Room Classification Tables for Clean Rooms

LB Entity –
C.E.C.H.S. Consulting, LLC

Effective Date
11Jun2019

Revision
0

Page 1 of 4

Table I. Summary Table for Temperature, Humidity, Air Change and Pressure Differential Requirements

NOTE: The information in this guide is presented as a guide for design of cleanrooms; it is not intended to supersede existing site procedures or validation tests used to determine existing cleanroom standards.

Consult Design Engineering Firm for proper LotterBhanson - C.E.C.H.S. Room Classification based on operations covered in ISPE Baseline Guides.^{8,9,10}

LotterBhanson - C.E.C.H.S. Designation	ISO 5 / Grade A	ISO 7 / Grade B	ISO 8 / Grade C	Grade D	CNC Level 2/3	CNC Level 1
Other Industry Designations	Grade A ^{Ref 2} ISO 4.8 in operation ^{Ref 2} ISO 4.8 at rest ^{Ref 2} Class 100 ^{Ref 4}	Grade B ^{Ref 2} ISO 7 in operation ^{Ref 2} ISO 5 at rest ^{Ref 2} Class 10,000 ^{Ref 4}	Grade C ^{Ref 2} ISO 8 in operation ^{Ref 2} ISO 7 at rest ^{Ref 2} Class 100,000 ^{Ref 4}	Grade D ^{Ref 2} Not Specified in operation ^{Ref 2} ISO 8 at rest ^{Ref 2}	Preferred ISO 8 at rest Controlled Not Classified (CNC) ^{Ref 8} Level II and Level III protection ^{Ref 9, 10}	Controlled Not Classified (CNC) ^{Ref 8} Level I Protection ^{Ref 9, 10}
Recommended Temperature / Humidity	Generally, [] °C Generally, [] % RH ^{Ref 6}	Generally, [] °C Generally, [] % RH ^{Ref 6}	Generally, [] °C Generally, [] % RH ^{Ref 6}	Generally, [] °C Generally, [] % RH ^{Ref 6}	Generally, [] °C Generally, [] % RH	Generally, [] °C Generally, [] % RH
Filtration, Air Flow & Face Velocity/ Air Changes per hour (ACH)	Minimum HEPA Filter ^{Refs 4, 8} Laminar ^{Ref 2} OR Unidirectional ^{Refs 4, 6} Face Velocity [] m/sec ^{Refs 2, 4, 6} Min [] ACH ^{Ref 1} (Best Engineering Practice may call for [] + ACHs)	Minimum HEPA Filter ^{Ref 8} Mixed Flow ^{Ref 6} Face Velocity [] m/sec ^{Refs 2, 4} [] ACH ^{Refs 1, 6}	Minimum HEPA Filter ^{Ref 8} Mixed Flow ^{Ref 6} Face Velocity [] ^{Refs 2, 6} [] ACH ^{Refs 1, 8}	Minimum HEPA Filter ^{Ref 8} Mixed Flow ^{Ref 6} Face Velocity Not Specified ^{Refs 2, 6} [] ACH ^{Ref 8}	Minimum [] Filter ^{Ref 9, 10} Mixed Flow ^{Ref 6} Face Velocity Not Specified ^{Refs 2, 6} [] ACH ^{Ref 8}	Minimum [] Filter ^{Ref 9, 10} Mixed Flow ^{Ref 6} Face Velocity Not Specified ^{Refs 2, 6} [] ACH ^{Ref 8}
Differential Pressures (continuous monitoring required)	[] Pa differential to adjacent rooms of different classes ^{Refs 2, 4} [] Pa ([] "wg) to adjacent unclassified rooms ^{Ref 4}	[] Pa differential to adjacent rooms of different classes ^{Refs 2, 4} [] Pa ([] "wg) to adjacent unclassified rooms ^{Ref 4}	[] Pa differential to adjacent rooms of different classes ^{Refs 2, 4} [] Pa ([] "wg) to adjacent unclassified rooms ^{Ref 4}	[] Pa differential to adjacent unclassified rooms ^{Ref 4}	[] Pa differential to adjacent unclassified rooms	[] Pa differential to adjacent unclassified rooms

See References on Page 4 of this Attachment.

HVAC – Basis of Design: Room Classification Tables for Clean Rooms

LB Entity –
C.E.C.H.S. Consulting, LLC

Effective Date
11Jun2019

Revision
0

Page 2 of 4

Table II. Summary Table Environmental Monitoring Limits per Grade

NOTE: The information in this guide is presented as a guide for design of cleanrooms; it is not intended to supersede existing site procedures or environmental monitoring testing used to determine existing cleanroom standards.

LotterBhanson - C.E.C.H.S. Designation	ISO 5 / Grade A	ISO 7 / Grade B	ISO 8 / Grade C	Grade D	CNC Level 2/3	CNC Level 1
Maximum Allowed Particulate Count	<p>At Rest: $\text{#/m}^3 > 5.0\mu\text{m}$ Ref 2 $\text{#/m}^3 > 0.5\mu\text{m}$ Refs 2, 5</p> <p>In Operation: $\text{#/m}^3 > 5.0\mu\text{m}$ Ref 2 $\text{#/m}^3 > 0.5\mu\text{m}$ Refs 2, 5</p>	<p>At Rest: $\text{#/m}^3 > 5.0\mu\text{m}$ Ref 2 $\text{#/m}^3 > 0.5\mu\text{m}$ Ref 2</p> <p>In Operation: $\text{#/m}^3 > 5.0\mu\text{m}$ Ref 2 $\text{#/m}^3 > 0.5\mu\text{m}$ Refs 2, 5</p>	<p>At Rest: $\text{#/m}^3 > 5.0\mu\text{m}$ Ref 2 $\text{#/m}^3 > 0.5\mu\text{m}$ Ref 2</p> <p>In Operation: $\text{#/m}^3 > 5.0\mu\text{m}$ Ref 2 $\text{#/m}^3 > 0.5\mu\text{m}$ Refs 2, 5</p>	<p>At Rest: $\text{#/m}^3 > 5.0\mu\text{m}$ Ref 2 $\text{#/m}^3 > 0.5\mu\text{m}$ Ref 2</p> <p>In Operation: $\text{#/m}^3 > 5.0\mu\text{m}$ Ref 2</p>	<p>At Rest (Preferred, Not Required): $\text{#/m}^3 > 5.0\mu\text{m}$ Ref 2 $\text{#/m}^3 > 0.5\mu\text{m}$ Refs 2, 5</p> <p>In Operation: Not Specified</p>	Not Specified
Viable Counts – Airborne 90mm Settle Plate and Active Air Sampling	<p>Settle Plate: $\leq \text{CFU}/\text{hrs}$ Refs 2, 4 AND $\leq \text{ % Recovery Rate}$ Ref 1</p> <p>Active Air: $\leq \text{CFU}/\text{m}^3$ Refs 2, 4 AND $\leq \text{ % Recovery Rate}$ Ref 1</p>	<p>Settle Plate: $\leq \text{CFU}/\text{hrs}$ Refs 2, 4 AND $\leq \text{ % Recovery Rate}$ Ref 1</p> <p>Active Air: $\leq \text{CFU}/\text{m}^3$ Refs 2, 4 AND $\leq \text{ % Recovery Rate}$ Ref 1</p>	<p>Settle Plate: $\leq \text{CFU}/\text{hrs}$ Refs 2, 4 AND $\leq \text{ % Recovery Rate}$ Ref 1</p> <p>Active Air: $\leq \text{CFU}/\text{m}^3$ Refs 2, 4 AND $\leq \text{ % Recovery Rate}$ Ref 1</p>	<p>Settle Plate: $\leq \text{CFU}/\text{hrs}$ Ref 2 Active Air: $\leq \text{CFU}/\text{m}^3$ Ref 2</p>	Not Specified	Not Specified

See References on Page 4 of this Attachment.

HVAC – Basis of Design: Room Classification Tables for Clean Rooms

LB Entity –
C.E.C.H.S. Consulting, LLC

Effective Date

Revision

11Jun2019

0

Page 3 of 4

Table III. Summary Table Environmental Monitoring Limits per Grade (Continued)

NOTE: The information in this guide is presented as a guide for design of cleanrooms; it is not intended to supersede existing site procedures or environmental monitoring testing used to determine existing cleanroom standards.

LotterBhanson - C.E.C.H.S. Designation	ISO 5 / Grade A	ISO 7 / Grade B	ISO 8 / Grade C	Grade D	CNC Level 2/3	CNC Level 1
Viable Counts – Surface Swab or 55mm Contact Plate	< [REDACTED] CFU/plate Ref 2 AND < [REDACTED] % Recovery Rate Ref 1	< [REDACTED] CFU/plate Ref 2 AND < [REDACTED] % Recovery Rate Ref 1	< [REDACTED] CFU/plate Ref 2 AND < [REDACTED] % Recovery Rate Ref 1	< [REDACTED] CFU/plate Ref 2	Not Specified	Not Specified
Viable Counts – Gown	< [REDACTED] % Recovery Rate Ref 1	< [REDACTED] % Recovery Rate Ref 1	< [REDACTED] % Recovery Rate Ref 1	Not Specified	Not Specified	Not Specified
Viable Counts – Gloves	< [REDACTED] CFU/glove print Ref 2 AND < [REDACTED] % Recovery Rate Ref 1	< [REDACTED] CFU/glove print Ref 2 AND < [REDACTED] % recovery Rate Ref 1	Not Specified Ref 2 AND < [REDACTED] % Recovery Rate Ref 1	Not Specified Ref 2	Not Specified	Not Specified
Maximum Testing Interval – ISO Class Microbial	Re-Classification: [REDACTED] months Ref 7 Process Control: [REDACTED] during critical processing steps (unless not possible) Ref 2	Re-Classification: [REDACTED] months Ref 7 Process Control: [REDACTED] for ISO Grade [REDACTED] background areas Ref 2 OR each shift/batch Ref 1	Re-Classification: [REDACTED] months Ref 7 Process Control: [REDACTED] or Each Shift (if adjacent to ISO Grade [REDACTED] Ref 1	Re-Classification: Not Specified – recommend [REDACTED] months. Process Control: [REDACTED] Ref 1	Re-Classification (Preferred, Not Required): [REDACTED] months Ref 7 Process Control: Not Specified	Re-Classification: Not Specified – recommend [REDACTED] months. Process Control: Not Specified

See References on Page 4 of this Attachment.

Table IV. Isolator/Glovebox and RABS Design Requirements

NOTE: The information in this guide is presented as a guide for design of cleanrooms; it is not intended to supersede existing site procedures or environmental monitoring testing used to determine existing cleanroom standards.

LotterBhanson - C.E.C.H.S. Designation	Isolator/RABS ISO 5 / Grade A	LotterBhanson - C.E.C.H.S. Designation	Isolator/RABS ISO 5 / Grade A
Other Industry Designations	Grade A ^{Ref 2} ISO 4.8 in operation ^{Ref 2} ISO 4.8 at rest ^{Ref 2} Class 100 ^{Ref 4}	Maximum Particulate Count	At Rest: █ / m ³ > 5.0µm ^{Ref 2} █ / m ³ > 0.5µm ^{Ref 2} In Operation: █ / m ³ > 5.0µm ^{Ref 2} █ / m ³ > 0.5µm ^{Refs 2, 5}
Recommended Temperature / Humidity	Generally, █ °C Generally, █ % RH ^{Ref 6}	Viable Counts – Airborne 90mm Settle Plate and Active Air Sampling	Settle Plate: █ % Recovery Rate ^{Ref 1} Active Air: █ % Recovery Rate ^{Ref 1}
Filtration, Air Flow & Face Velocity/ Air Changes per hour (ACH)	Minimum HEPA Filter ^{Ref 4} Mixed, Unidirectional OR Laminar ^{Ref 1} , Unidirectional at Critical Points ^{Refs 1, 2} Velocity not Specified ^{Refs 1, 2} Air Changes not Specified ^{Refs 1, 6, 8}	Viable Counts – Surface Swab or 55mm Contact Plate	█ % Recovery Rate ^{Ref 1}
Differential Pressures (continuous monitoring required)	█ Pa █ " wg) differential to background environment ^{Ref 4}	Viable Counts – Gown	█ % Recovery Rate ^{Ref 1}
Background Area Designation	Minimum ISO Grade █	Viable Counts – Gloves	█ % recovery Rate ^{Ref 1}
		Maximum Testing Interval	Re-Classification: █ months ^{Ref 7} Process Control: █ during critical processing steps (unless not possible) ^{Ref 2}

References:

- 1 USP General Information Chapter <1116>
- 2 EudraLex: The Rules Governing Medicinal Products in the European Union, Volume 4: EU Guidelines to Good Manufacturing Practice – Medicinal Products for Human and Veterinary Use, Annex 1 dated November 25, 2008
- 3 Parenteral Drug Association Technical Report 13 Revised, "Fundamentals of an Environmental Monitoring Program" dated June 2014
- 4 FDA Guidance to Industry: Sterile Drug Products Produced by Aseptic Processing – Current Good Manufacturing Practice dated September 2004
- 5 ISO 14644-1 Cleanrooms and Associated Controlled Environments Part 1
- 6 ISO 14644-4 Cleanrooms and Associated Controlled Environments Part 4
- 7 ISO 14644-2 Cleanrooms and Associated Controlled Environments Part 2
- 8 International Society of Pharmaceutical Engineers, Good Practice Guide: Heating, Ventilation, and Air Conditioning (HVAC) dated 2009
- 9 International Society of Pharmaceutical Engineers, Baseline Guide, Volume 1 Active Pharmaceutical Ingredients, 2nd Edition dated June 2007
- 10 International Society of Pharmaceutical Engineers, Baseline Guide, Volume 2 Oral Solid Dosage Forms, 2nd Edition dated November 2007